

Physics, Pharmacology and Physiology for Anaesthetists

Key concepts for the FRCA

Second edition

Physics, Pharmacology and Physiology for Anaesthetists

Key concepts for the FRCA

Second edition

Matthew E. Cross MB ChB MA(Ed) MRCP FRCA
Consultant Anaesthetist, Queen Alexandra Hospital, Portsmouth, UK

Emma V. E. Plunkett MBBS MA MRCP FRCA

Specialist Registrar in Anaesthetics, Birmingham School of Anaesthesia, UK

Foreword to the second edition by

Professor Peter Hutton PhD FRCA FRCP FIMechE

Consultant Anaesthetist, University Hospital Birmingham and Honorary Professor of Anaesthesia, University of Birmingham, Birmingham, UK

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Published in the United States of America by Cambridge University Press, New York

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107615885

© Matthew E. Cross and Emma V. E. Plunkett 2008, 2014

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

Second edition first published 2014

Printed in the United Kingdom by Clays, St Ives plc

A catalogue record for this publication is available from the British Library

ISBN 978-1-107-61588-5 Paperback

Additional resources for this publication at www.cambridge.org/9781107615885

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Every effort has been made in preparing this book to provide accurate and up-to-date information which is in accord with accepted standards and practice at the time of publication. Although case histories are drawn from actual cases, every effort has been made to disguise the identities of the individuals involved. Nevertheless, the authors, editors and publishers can make no warranties that the information contained herein is totally free from error, not least because clinical standards are constantly changing through research and regulation. The authors, editors and publishers therefore disclaim all liability for direct or consequential damages resulting from the use of material contained in this book. Readers are strongly advised to pay careful attention to information provided by the manufacturer of any drugs or equipment that they plan to use.

It was with great sadness that we learned of the death of Dr Mark duBoulay shortly after the first edition of this book had gone to print. He is missed by many.

MC & EP

For Anna, Harvey and Fraser, a wonderful family

MC

For Mum and Dad. Thank you for everything.

ΕP

Contents

Acknowledgements	page x11
Preface	xiii
Foreword to the second edition	
Professor Peter Hutton	XV
Foreword to the first edition	
Dr Tom E. Peck	xvii
Introduction	1
Section 1 · Mathematical principles	5
Mathematical relationships	7
Exponential relationships and logarithms	9
Integration and differentiation	16
Physical measurement and calibration	19
The SI units	23
Non-SI units and conversion factors	26
Signal to noise ratio	27
Section 2 · Physical principles	29
Simple mechanics	31
The gas laws	34
Laminar flow	36
Turbulent flow	37
Bernoulli, Venturi and Coanda	38
Heat and temperature	40
Humidity	43
Latent heat	46
Isotherms	48
Mechanisms of heat loss	50
Solubility and diffusion	53
Osmosis and colligative properties	55
Principles of surface tension	57
Resistors and resistance	59
Capacitors and capacitance	60
Inductors and inductance	63
Wheatstone bridge	65
Resonance and damping	66
Cleaning, disinfection and sterilization	70

viii Contents

Section 3 · Principles of special equipment	73
Magnetic resonance imaging	75
Refraction and fibre optics	79
Laser principles	81
Surgical diathermy	84
Medical ultrasound	87
The Doppler effect	89
Oesophageal doppler	90
Cardiac output measurement	92
Goal-directed fluid therapy	97
Defibrillators	98
Breathing systems	100
Ventilator profiles	103
Pulse oximetry	109
Capnography	112
Absorption of carbon dioxide	117
Neuromuscular blockade monitoring	119
Thromboelastography	124
Section 4 · Pharmacological principles	127
Atomic structure	129
Oxidation and reduction	131
Chemical bonds	132
Inorganic and organic chemistry	135
Isomerism	138
Enzyme kinetics	141
G-proteins and second messengers	144
The Meyer–Overton hypothesis	146
The concentration and second gas effects	148
Drug interactions	150
Adverse drug reactions	151
Pharmacogenetics	153
Section 5 · Pharmacodynamics	155
Drug-receptor interaction	157
Affinity, efficacy and potency	160
Agonism and antagonism	164
Hysteresis	170
Tachyphylaxis and tolerance	171
Drug dependence	173

	Contents
Section 6 · Pharmacokinetics	175
Absorption, distribution and redistribution	177
First-pass metabolism and bioavailability	179
Volume of distribution	181
Clearance	183
Time constant and half life	185
Non-compartmental modelling	187
Compartmental modelling	188
Physiological modelling	193
Context-sensitive half time	194
Target controlled infusions	196
Section 7 · Respiratory physiology	201
Lung volumes	203
Spirometry	205
Flow-volume loops	207
The alveolar gas equation	211
The shunt equation	212
Pulmonary vascular resistance	214
Distribution of pulmonary blood flow	216
Ventilation/perfusion mismatch	218
Dead space	219
Fowler's method	220
The Bohr equation	221
Oxygen delivery and transport	223
Classification of hypoxia	226
The oxyhaemoglobin dissociation curve	228
Carriage of carbon dioxide	230
Work of breathing	232
Control and effects of ventilation	233
Compliance and resistance	236
Section 8 · Cardiovascular physiology	239
Einthoven's triangle and axis	241
Cardiac action potentials	244
The cardiac cycle	246
Electrocardiographic changes	249
Pressure and flow calculations	254
Central venous pressure	257
Pulmonary capillary wedge pressure	258
The Frank–Starling relationship	260
Venous return and capillary dynamics	262

x Contents

Ventricular pressure-volume relationship	267
Systemic and pulmonary vascular resistance	272
The Valsalva manoeuvre	274
Control of heart rate	276
Materno-fetal and neonatal circulations	278
Shock	280
Section 9 · Renal physiology	281
Acid-base balance	283
Buffers and the anion gap	285
Glomerular filtration rate and tubulo-glomerular feedback	289
Autoregulation and renal vascular resistance	291
The loop of Henle	293
Glucose handling	295
Sodium handling	296
Potassium handling	297
Section 10 · Neurophysiology	299
Action potentials	301
Muscle structure and function	305
Muscle reflexes	308
The Monro-Kelly doctrine	310
Cerebral blood flow	313
Flow-metabolism coupling	316
Formation and circulation of cerebrospinal fluid	319
Pain	320
Section 11 · Applied sciences	323
The stress response	325
Cardiopulmonary exercise testing	328
Pregnancy	331
Paediatrics	337
Ageing	340
Obesity	344
Section 12 · Statistical principles	347
Types of data	349
Indices of central tendency and variability	351
Types of distribution	355
Methods of data analysis	357
Error and outcome prediction	366
Receiver operating characteristic curve	369

	Contents	хi
Clinical trials	370	
Evidence-based medicine	374	
Kaplan Meier curves	376	
Appendix	377	
Index	404	

Acknowledgements

We are grateful to the following individuals for their invaluable help in bringing this book to publication

Surg Lt Cdr Bentley Waller BSc(Hons) MB ChB FRCA RN Anaesthetics Department, Queen Alexandra Hospital, Portsmouth, UK

For his thorough proofreading of the first edition and his extraordinary yet diplomatic ability to suggest areas for improvement. Much appreciated.

Professor Peter Hutton PhD FRCA FRCP FIMechE Anaesthetics Department, University Hospital Birmingham, Birmingham, UK

In addition we are grateful for permission to reprint the illustration on page 197 from Oxford University Press, and the illustrations on pages 296 and 297 from International Thomson Publishing Services Ltd., Cheriton House, North Way, Andover, UK

Preface

In the years since the first edition of this book was published much has changed in the world of anaesthesia. Some of these changes relate to the way we practise as professionals and the way in which the evidence is shaping our knowledge in new areas. Other changes relate to the way in which anaesthetists in the United Kingdom progress through their training programmes. It is natural for the world around us to change in this way but, of course, it means that we have to continually reassess our practice, our knowledge and how that knowledge may best be applied.

Fortunately, the fundamental basic science principles that underpin much of anaesthesia have not changed to such an extent and so it is unlikely that you will suddenly be faced with the challenge of revising a newly discovered law of physics for the examination.

Where practice has changed, and where these changes have been incorporated into the syllabus of the Royal College, we have tried to reflect this in the latest edition. The second edition introduces applied physiology, more physical principles, fundamental biochemistry and many additional pages of information both in the body of the book and in the larger appendix. The layout and principles remain the same in that we hope you can use this book as a useful companion to explain some principles in a different way or to remind you of things that you will have read elsewhere. One thing that remains constant is that the FRCA examination is hard but fair. If you dedicate yourself to learning, absorbing and using all the information you need to be successful in the examination then you will emerge with the skills required to flourish in your profession. It is worth it and we hope this book can help you along the way.

Good luck in the examinations, by the time you read this the end is already in sight!

Foreword to the second edition

An understanding of physics, pharmacology and physiology is central to high-quality patient care. Grasping the key concepts is not optional: it is an essential cornerstone underpinning the frequent judgements that have to be made in everyday clinical practice.

Today, information is available from many sources: books, journals, the internet and podcasts. However, some of this is not written for the postgraduate student and a proportion is unfiltered and of uncertain provenance. Sorting the wheat from the chaff can be both time-consuming and frustrating, and not infrequently leaves the explorer less, rather than more, focused in their awareness of what really counts.

This book, written by two enthusiasts whose own experiences of postgraduate examinations is still within recent memory, is a considerable contribution to the resources of those preparing for postgraduate examinations in anaesthesia and intensive care. In terms of key subject areas, I cannot find anything included within it that is not essential and I can think of nothing excluded which is.

The text is clear and concise: the diagrams are immediately comprehensible but do not lack detail; the general presentation reflects good examination technique. The authors themselves recognize the need for more detailed companion texts where deeper study is necessary and have not tried to misrepresent their book's place in the wider armamentarium of the examinee.

What all examinees need as they study for, and approach, postgraduate examinations is a single reliable source of pre-prepared essential information that they can both carry with them and refer to with confidence. This book meets these two needs admirably. In addition, the text style demonstrates the way to convey information quickly but without unnecessary embellishment – the ideal method for a candidate to adopt.

In summary, I think this is a valuable second edition of a text that has already received a considerable following. The authors have done an excellent job; postgraduate trainees have available a book that 'does what it says on the can'; and examiners can look forward to future answers with that frequently elusive 'high signal to noise ratio'.

All I can do now is to wish both the authors and the readers the very best in their personal efforts to provide high-quality care for patients. This after all, is what medicine is all about.

Professor Peter Hutton PhD FRCA FRCP FIMechE

Consultant Anaesthetist, University Hospital Birmingham Honorary Professor, University of Birmingham

Foreword to the first edition

Many things are currently in a state of flux within the world of medical education and training, and the way in which candidates approach examinations is no exception. Gone are the days when large weighty works are the first port of call from which to start the learning experience. Trainees know that there are more efficient ways to get their heads around the concepts that are required in order to make sense of the facts.

It is said that a picture says a thousand words and this extends to diagrams as well. However, diagrams can be a double-edged sword for trainees unless they are accompanied by the relevant level of detail. Failure to label the axis, or to get the scale so wrong that the curve becomes contradictory is at best confusing.

This book will give back the edge to the examination candidate if they digest its contents. It is crammed full of precise, clear and well-labelled diagrams. In addition, the explanations are well structured and leave the reader with a clear understanding of the main point of the diagram and any additional information where required. It is also crammed full of definitions and derivations that are very accessible.

It has been pitched at those studying for the primary FRCA examination and I have no doubt that they will find it a useful resource. Due to its size, it is never going to have the last word, but it is not trying to achieve that. I am sure that it will also be a useful resource for those preparing for the final FRCA and also for those preparing teaching material for these groups.

Doctors Cross and Plunkett are to be congratulated on preparing such a clear and useful book – I shall be recommending it to others.

Dr Tom E. Peck MBBS BSc FRCA

Consultant Anaesthetist, Royal Hampshire County Hospital, Winchester, UK