
Texts in Computational Science and Engineering 6

A Primer on Scientific Programming with Python

Bearbeitet von
Hans Petter Langtangen

5. Auflage 2016. Buch. XXXI, 922 S. Hardcover
ISBN 978 3 662 49886 6

Format (B x L): 17,8 x 25,4 cm

Weitere Fachgebiete > EDV, Informatik > Programmiersprachen: Methoden

schnell und portofrei erhältlich bei

Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft.
Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm
durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr

als 8 Millionen Produkte.

http://www.beck-shop.de/Langtangen-A-Primer-on-Scientific-Programming-with-Python/productview.aspx?product=16583019&utm_source=pdf&utm_medium=clickthru_preamble&utm_campaign=pdf_16583019&campaign=pdf/16583019
http://www.beck-shop.de/trefferliste.aspx?toc=8285


Preface

The aim of this book is to teach computer programming using examples from math-
ematics and the natural sciences. We have chosen to use the Python programming
language because it combines remarkable expressive power with very clean, simple,
and compact syntax. Python is easy to learn and very well suited for an introduction
to computer programming. Python is also quite similar to MATLAB and a good
language for doing mathematical computing. It is easy to combine Python with
compiled languages, like Fortran, C, and C++, which are widely used languages for
scientific computations.

The examples in this book integrate programming with applications to mathe-
matics, physics, biology, and finance. The reader is expected to have knowledge
of basic one-variable calculus as taught in mathematics-intensive programs in high
schools. It is certainly an advantage to take a university calculus course in parallel,
preferably containing both classical and numerical aspects of calculus. Although
not strictly required, a background in high school physics makes many of the ex-
amples more meaningful.

Many introductory programming books are quite compact and focus on listing
functionality of a programming language. However, learning to program is learning
how to think as a programmer. This book has its main focus on the thinking pro-
cess, or equivalently: programming as a problem solving technique. That is why
most of the pages are devoted to case studies in programming, where we define a
problem and explain how to create the corresponding program. New constructions
and programming styles (what we could call theory) is also usually introduced via
examples. Particular attention is paid to verification of programs and to finding
errors. These topics are very demanding for mathematical software, because the
unavoidable numerical approximation errors are possibly mixed with programming
mistakes.

By studying the many examples in the book, I hope readers will learn how to
think right and thereby write programs in a quicker and more reliable way. Re-
member, nobody can learn programming by just reading – one has to solve a large
amount of exercises hands on. The book is therefore full of exercises of various
types: modifications of existing examples, completely new problems, or debugging
of given programs.

To work with this book, I recommend using Python version 2.7. For Chaps. 5–9
and Appendices A–E, you need the NumPy and Matplotlib packages, preferably

v



vi Preface

also the IPython and SciTools packages, and for Appendix G, Cython is required.
Other packages used in the text are nose and sympy. Section H.1 has more infor-
mation on how you can get access to Python and the mentioned packages.

There is a web page associated with this book, http://hplgit.github.io/scipro-
primer, containing all the example programs from the book as well as information
on installation of the software on various platforms.

Python version 2 or 3? A common problem among Python programmers is to
choose between version 2 or 3, which at the time of this writing means choosing
between version 2.7 and 3.5. A common recommendation is to go for Python 3,
because this is the version that will be further developed in the future. However,
there is a problem that much useful mathematical software in Python has not yet
been ported to Python 3. Therefore, Python version 2.7 is the most popular version
for doing scientific computing, and that is why also this book applies version 2.7.

A widely used strategy for software developers who want to write Python code
that works with both versions, is to develop a common version for Python 2 and 3.
For the programs in this book, a common version can easily be produced by first
developing for version 2.7 and then automatically convert the code by running the
futurize program. Section 4.10 demonstrates how this is done in simple cases.

The Python 2.7 code in this book sticks to all modern constructions that are
backported from version 3 such that the code becomes as close as possible to the
equivalent Python 3 code. At any time, you can just run futurize to see the differ-
ences between your Python 2.7 version and the corresponding Python 3.5 version.

Contents Chapter 1 introduces variables, objects, modules, and text formatting
through examples concerning evaluation of mathematical formulas. Chapter 2
presents programming with while and for loops as well as lists, including nested
lists. The next chapter deals with two other fundamental concepts in programming:
functions and if-else tests.

How to read data into programs and deal with errors in input are the subjects of
Chap. 4. Chapter 5 introduces arrays and array computing (including vectorization)
and how this is used for plotting y D f .x/ curves and making animation of curves.
Many of the examples in the first five chapters are strongly related. Typically, for-
mulas from the first chapter are used to produce tables of numbers in the second
chapter. Then the formulas are encapsulated in functions in the third chapter. In
the next chapter, the input to the functions are fetched from the command line, and
validity checks of the input are added. The formulas are then shown as graphs in
Chap. 5. After having studied Chaps. 1–5, the reader should have enough knowl-
edge of programming to solve mathematical problems by what many refer to as
“MATLAB-style” programming.

Chapter 6 explains how to work with dictionaries and strings, especially for in-
terpreting text data in files and storing the extracted information in flexible data
structures. Class programming, including user-defined types for mathematical com-
putations (with overloaded operators), is introduced in Chap. 7. Chapter 8 deals
with random numbers and statistical computing with applications to games and
random walks. Object-oriented programming, in the meaning of class hierarchies
and inheritance, is the subject of Chap. 9. The key examples here deal with building
toolkits for numerical differentiation and integration as well as graphics.



Preface vii

Appendix A introduces mathematical modeling, using sequences and differ-
ence equations. Only programming concepts from Chaps. 1–5 are used in this
appendix, the aim being to consolidate basic programming knowledge and apply
it to mathematical problems. Some important mathematical topics are introduced
via difference equations in a simple way: Newton’s method, Taylor series, inverse
functions, and dynamical systems.

Appendix B deals with functions on a mesh, numerical differentiation, and nu-
merical integration. A simple introduction to ordinary differential equations and
their numerical treatment is provided in Appendix C. Appendix D shows how a
complete project in physics can be solved by mathematical modeling, numerical
methods, and programming elements fromChaps. 1–5. This project is a good exam-
ple on problem solving in computational science, where it is necessary to integrate
physics, mathematics, numerics, and computer science.

How to create software for solving ordinary differential equations, using both
function-based and object-oriented programming, is the subject of Appendix E. The
material in this appendix brings together many parts of the book in the context of
physical applications and differential equations.

Appendix F is devoted to the art of debugging, and in fact problem solving in
general. Speeding up numerical computations in Python by migrating code to C via
Cython is exemplified in Appendix G. Finally, Appendix H deals with various more
advanced technical topics.

Most of the examples and exercises in this book are quite short. However, many
of the exercises are related, and together they form larger projects, for example on
Fourier Series (3.21, 4.21, 4.22, 5.41, 5.42), numerical integration (3.11, 3.12, 5.49,
5.50, A.12), Taylor series (3.37, 5.32, 5.39, A.14, A.15, 7.23), piecewise constant
functions (3.29–3.33, 5.34, 5.47, 5.48, 7.19–7.21), inverse functions (E.17–E.20),
falling objects (E.8, E.9, E.38, E.39), oscillatory population growth (A.19, A.21,
A.22, A.23), epidemic disease modeling (E.41–E.48), optimization and finance
(A.24, 8.42, 8.43), statistics and probability (4.24, 4.25, 8.23, 8.24), hazard games
(8.8–8.14), random walk and statistical physics (8.32–8.40), noisy data analysis
(8.44–8.46), numerical methods (5.25–5.27, 7.8, 7.9, A.9, 7.22, 9.15–9.17, E.30–
E.37), building a calculus calculator (7.34, 9.18, 9.19), and creating a toolkit for
simulating vibrating engineering systems (E.50–E.55).

Chapters 1–9 together with Appendices A and E have from 2007 formed the core
of an introductory first semester bachelor course on scientific programming at the
University of Oslo (INF1100, 10 ECTS credits).

Changes from the fourth to the fifth edition Substantial changes were introduced
in the fourth edition, and the fifth edition is primarily a consolidation of those
changes. Many typos have been corrected and many explanations and exercises
have been improved. The emphasis on unit tests and test functions, especially in
exercises, is stronger than in the previous edition. Symbolic computation with the
aid of SymPy is used to a larger extent and integrated with numerical computing
throughout the book. All classes are now new-style (instead of old-style/classic as
in previous editions). Examples on Matplotlib do not use the pylab module any-
more, but pyplot and MATLAB-like syntax is still favored to ease the transition
between Python and MATLAB. The concept of closures is more explicit than in
earlier editions (see the new Sect. 7.1.7) since this is a handy and popular construc-



viii Preface

tion much used in the scientific Python community. We also discuss the difference
between Python 2 and 3 and demonstrate how to use the future module to write
code that runs under both versions.

The most substantial new material in the fifth edition appears toward the end of
Chap. 5 and regards high-performance computing, linear algebra, and visualization
of scalar and vector fields. Although this material is not used elsewhere in the book,
many readers have requested basic recipes when going from one to two variables
or from vectors to matrices later when solving more advanced problems and using
the book as their programming reference. The new matrial in Chap. 5 was written
jointly with Dr. Øyvind Ryan.

Acknowledgments This book was born out of stimulating discussions with my
close colleague Aslak Tveito, and he started writing what is nowAppendix B and C.
The whole book project and the associated university course were critically de-
pendent on Aslak’s enthusiastic role back in 2007. The continuous support from
Aslak regarding my book projects is much appreciated and contributes greatly to
my strong motivation. Another key contributor in the early days was Ilmar Wilbers.
He made extensive efforts with assisting the book project and establishing the uni-
versity course INF1100. I feel that without Ilmar and his solutions to numerous
technical problems the first edition of the book would never have been completed.
Johannes H. Ring also deserves special acknowledgment for the development of the
Easyviz graphics tool back in the days when Python plotting was a hassle, and later
for his maintenance of software associated with the book.

Professor Loyce Adams studied the entire book, solved all the exercises, found
numerous errors, and suggested many improvements. Her contributions are so
much appreciated. More recently, Helmut Büch worked extremely carefully
through all details in Chaps. 1–6, tested the software, found many typos, and
asked critical questions that led to lots of significant improvements. I am so thank-
ful for all his efforts and for his enthusiasm during the preparations of the fourth
edition. The fifth edition has benefited much from Hakki Eres’ careful examination
of the fourth edition. He found several typos and code errors, some of which go
back to the first edition.

Special thanks go to Geir Kjetil Sandve for being the primary author of the
computational bioinformatics examples in Sects. 3.3, 6.5, 8.3.4, and 9.5, with con-
tributions from Sveinung Gundersen, Ksenia Khelik, Halfdan Rydbeck, and Kai
Trengereid. I am also greatful to Øyvind Ryan’s work with linear algebra and visu-
alization of scalar and vector fields in Chap. 5.

Several people have contributed with suggestions for improvements of the text,
the exercises, and the associated software. I will in particular mention Ingrid Eide,
Ståle Zerener Haugnæss, Kristian Hiorth, Timothy Keough, Arve Knudsen, Espen
Kristensen, Tobias Vidarssønn Langhoff, Martin Vonheim Larsen, Kine Veronica
Lund, Solveig Masvie, Håkon Møller, Rebekka Mørken, Mathias Nedrebø, Marit
Sandstad, Helene Norheim Semmerud, Lars Storjord, Fredrik Heffer Valdmanis,
and Torkil Vederhus. Hakon Adler is greatly acknowledged for his careful reading
of early various versions of the manuscript. Many thanks go to the professors Fred
Espen Bent, Ørnulf Borgan, Geir Dahl, Knut Mørken, and Geir Pedersen for for-
mulating several exciting exercises from various application fields. I also appreciate
the cover image made by my good friend Jan Olav Langseth.



Preface ix

This book and the associated course are parts of a comprehensive and successful
reform at the University of Oslo, called Computing in Science Education. The goal
of the reform is to integrate computer programming and simulation in all bachelor
courses in natural science where mathematical models are used. The present book
lays the foundation for the modern computerized problem solving technique to be
applied in later courses. It has been extremely inspiring to work closely with the
driving forces behind this reform, especially the professors Morten Hjorth-Jensen,
Anders Malthe-Sørenssen, Knut Mørken, and Arnt Inge Vistnes.

The excellent assistance from the Springer system over the years, in particular
Martin Peters, Thanh-Ha Le Thi, Ruth Allewelt, Peggy Glauch-Ruge, Nadja Kroke,
Thomas Schmidt, Patrick Waltemate, Donatas Akmanavicius, and Yvonne Schlat-
ter, is highly appreciated, and ensured a smooth and rapid production of all editions
of this book.

Oslo, February 2016 Hans Petter Langtangen



http://www.springer.com/978-3-662-49886-6


