COSMIC MAGNETIC FIELDS

Magnetic fields are important in the Universe and their effects contain the key to many astrophysical phenomena that are otherwise impossible to understand. This book presents an up-to-date overview of this fast-growing topic and its interconnections to plasma processes, astroparticle physics, high energy astrophysics, and cosmic evolution. The phenomenology and impact of magnetic fields are described in diverse astrophysical contexts within the Universe, from galaxies to galaxy clusters, the filaments and voids of the intergalactic medium, and out to the largest redshifts. The presentation of mathematical formulae is accessible and is designed to add insight into the broad range of topics discussed. Written for graduate students and researchers in physics, astrophysics, and related disciplines, this volume will inspire readers to devise new ways of thinking about magnetic fields in space on galaxy scales and beyond.

PHILIPP P. KRONBERG is Research Professor Emeritus at the University of Toronto, Canada and Visiting Scholar at Los Alamos National Laboratory. He has served on or chaired advisory and management boards of many organisations and facilities and has received numerous awards and distinctions including a Humboldt Award, a Guggenheim Fellowship, and a Killiam Fellowship. For over thirty years Kronberg has pioneered both measurements and physical and mathematical analyses to deduce astrophysical magnetic fields on many scales, from our Milky Way to the most distant quasars.

CAMBRIDGE

Cambridge University Press 978-0-521-63163-1 — Cosmic Magnetic Fields Philipp P. Kronberg Frontmatter <u>More Information</u>

Cambridge Astrophysics Series

Series editors

Andrew King, Douglas Lin, Stephen Maran, Jim Pringle, Martin Ward, and Robert Kennicutt

Titles available in the series

25.	3K: The Cosmic Microwave Background Radiation
	by R. B. Partridge
26.	X-ray Binaries
	edited by Walter H. G. Lewin, Jan van Paradijs, and Edward P. J. van den Heuvel
27.	RR Lyrae Stars
	by Horace A. Smith
28.	Cataclysmic Variable Stars
	by Brian Warner
30.	Globular Cluster Systems
	by Keith M. Ashman and Stephen E. Zepf
33.	The Origin and Evolution of Planetary Nebulae
	by Sun Kwok
34.	Solar and Stellar Magnetic Activity
	by Carolus J. Schrijver and Cornelis Zwaan
35.	The Galaxies of the Local Group
	by Sidney van den Bergh
36.	Stellar Rotation
	by Jean-Louis Tassoul
37.	Extreme Ultraviolet Astronomy
	by Martin A. Barstow and Jay B. Holberg
39.	Compact Stellar X-ray Sources
	edited by Walter H. G. Lewin and Michiel van der Klis
40.	Evolutionary Processes in Binary and Multiple Stars
	by Peter Eggleton
41.	The Physics of the Cosmic Microwave Background
	by Pavel D. Naselsky, Dmitry I. Novikov, and Igor D. Novikov
42.	Molecular Collisions in the Interstellar Medium 2nd Edition
	by David Flower
43.	Classical Novae 2nd Edition
	edited by M. F. Bode and A. Evans
44.	Ultraviolet and X-ray Spectroscopy of the Solar Atmosphere
	by Kenneth J. H. Phillips, Uri Feldman, and Enrico Landi
45.	From Luminous Hot Stars to Starburst Galaxies
	by Peter S. Conti, Paul A. Crowther, and Claus Leitherer
46.	Sunspots and Starspots
47	by John H. Thomas and Nigel O. Weiss
47.	Accretion Processes in Star Formation 2nd Edition
10	by Lee Hartmann
48.	Pulsar Astronomy 4th Edition by Andrew Lyne and Francis Graham-Smith
49.	Astrophysical Jets and Beams
49.	by Michael D. Smith
50.	Maser Sources in Astrophysics
50.	by Malcolm Gray
51.	Gamma-ray Bursts
51.	edited by Chryssa Kouveliotou, Ralph A. M. J. Wijers, and Stan Woosley
52.	Physics and Chemistry of Circumstellar Dust Shells
54.	by Hans-Peter Gail and Erwin SedImayr
53.	Cosmic Magnetic Fields
	by Philipp P. Kronberg

COSMIC MAGNETIC FIELDS

PHILIPP P. KRONBERG University of Toronto

CAMBRIDGE

Cambridge University Press 978-0-521-63163-1 — Cosmic Magnetic Fields Philipp P. Kronberg Frontmatter <u>More Information</u>

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521631631

© Philipp P. Kronberg 2016

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2016

Printed in the United Kingdom by TJ International Ltd. Padstow Cornwall

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging in Publication Data Names: Kronberg, Philipp P., 1939-Title: Cosmic magnetic fields / Philipp P. Kronberg, University of Toronto. Description: Cambridge : Cambridge University Press, 2016. | Series: Cambridge astrophysics series ; 53 | Includes bibliographical references and index. Identifiers: LCCN 2016000896 | ISBN 9780521631631 (hardback : alk. paper) Subjects: LCSH: Cosmic magnetic fields. | Magnetic fields. | Astrophysics. Classification: LCC QB462.8 .K76 2016 | DDC 523.01/88–dc23 LC record available at http://lccn.loc.gov/2016000896

ISBN 978-0-521-63163-1 Hardback

While every effort has been made, it has not always been possible to identify the sources of all the material used, or to trace all copyright holders. If any omissions are brought to our notice, we will be happy to include the appropriate acknowledgements on reprinting and in the next update to the digital edition, as applicable.

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> This book is dedicated to my parents Philipp Kronberg and Jean Davidson Kronberg for their unwavering support of my career in astrophysics and radio astronomy and

> to my sons Paul, Martin, and Michael Kronberg for their constant encouragement in the writing of this book.

Contents

	Preface Acknowledgements	<i>page</i> xi xii
1	A brief history and background	1
1.1	Overview of some early results and concepts	1
1.2	Observational techniques and results: past, present, and future prospects	5
2	Methods for probing magnetic fields in diffuse astrophysical plasmas	9
2.1	Introduction	9
2.2	Some basics of polarised EM waves	9
2.3	Zeeman splitting of spectral lines	10
2.4	Polarisation of optical starlight and dust radiation as a probe of	
	interstellar fields	12
2.5	Radio telescope techniques for polarimetry	12
2.6	Faraday rotation	13
2.7	The concept of Faraday depth and magnetic field probes	
	in the 3rd dimension	17
2.8	The Crab Nebula as a 3-D Faraday synthesis model	21
2.9	Some instrumental and measurement effects involved in Faraday	
	rotation imaging	24
2.10	Faraday tomography to model magnetic structures in the	
	3rd dimension	25
2.11	Total energy and magnetic field estimates for	
	synchrotron-radiating clouds	27
2.12	Prospects for magnetic field measurement in other energy bands	29
3	Mechanisms for magnetic field generation and regeneration	33
3.1	Introduction	33
3.2	Some basic equations and the magnetic induction equation	34
3.3	Battery processes and seed fields	36
3.4	The role of cosmic ray pressure in galactic magnetic fields	42
3.5	Magnetic reconnection	43
3.6	Effects of neutral gas	52

vii

viii	Contents	
4	Galactic "microcosms" of extragalactic magnetic systems	55
4.1	Introductory comments	55
4.2	The Sun	56
4.3	Magnetic fields in other stars	57
4.4	Jets from Galactic stars	59
4.5	Molecular clouds and the role of magnetic fields in star formation	61
4.6	The generation and regeneration of magnetic fields	
	in supernova remnants	62
4.7	A magnetised jet in the Galactic centre	68
5	Magnetic field configurations in large galaxies	72
5.1	Introduction	72
5.2	Our Milky Way – a spiral galaxy from within	73
5.3	Magnetic structures of spiral galaxies	80
5.4	Some dynamical and energetic aspects of galaxies	88
5.5	Basic principles of the galactic $\alpha - \omega$ dynamo	89
6	Magnetic field outflow from dwarf and starburst galaxies	100
6.1	Introduction	100
6.2	Star formation in galaxies and associated magnetised outflows	101
6.3	IGM seeding due to "conventional" stellar processes in galaxies	109
7	Extragalactic jets and lobes – I	117
7.1	How much energy and from where?	117
7.2	Jets as electromagnetically driven systems	119
7.3	Representative model simulations of radio lobes fed by a	
	Poynting flux jet	120
7.4	Tests of kpc scale jet-lobe systems in different environments	126
7.5	Some specific ideas on extraction of magnetic energy at the	
	central BH	130
7.6	Electromagnetic extraction of collimated power flow at the	
	black hole	131
7.7	Another concept: Extraction of BH energy from the inner	
	accretion disc, outside the ergosphere	132
7.8	Summary of two SMBH jet models	136
7.9	Simulations of protostellar jets	137
8	Extragalactic jets and lobes – II. More on magnetic energy	
0.1	flows into the IGM from galaxy nuclei	140
8.1	Introduction	140
8.2	An electric circuit model for energy flow from a supermassive	1.40
0.2	black hole Blasma parameter estimates for a "typical" BII driven ist labe	140
8.3	Plasma parameter estimates for a "typical" BH-driven jet-lobe	1.40
	system outside of a large galaxy cluster	143

CAMBRIDGE

Cambridge University Press 978-0-521-63163-1 — Cosmic Magnetic Fields Philipp P. Kronberg Frontmatter <u>More Information</u>

	Contents	ix
8.4	Extragalactic jets as transmission lines and CR accelerators	146
8.5	Probes of the internal gas physics in magnetised radio lobes and halos	148
8.6	SMBH masses and magnetisation of the IGM	151
8.7	Some basic calculations relating to BH-powered outflow	152
8.8	Observational/experimental quantification of BH energy output to the IGM	153
8.9	Implications of constraints imposed by the energy gap in Fig. 8.2	155
8.10	Additional calculations of global energy release from galactic BHs	
	into the IGM and estimates of the photon energy component	155
8.11	Some consequences of "captured" energy release from galactic BHs	157
8.12	Summary of some questions	158
9	Magnetic fields associated with clusters and groups of galaxies	162
9.1	Introduction	162
9.2	Methods for probing galaxy cluster magnetic fields	166
9.3	Magnetic fields and cluster cooling	174
9.4	Energy components of the intracluster medium (ICM)	176
9.5	Regeneration and amplification of magnetic fields in the	
	intracluster medium	178
9.6	The Sunyaev-Zel'dovich effect as a probe of intracluster gas physics	182
9.7	Inverse-Compton emission and implications for intracluster	
	magnetic field strength	185
9.8	Hadronically produced CR electrons, CR protons, and related magnetic	
0.0	field energy	187
9.9	Summary	187
10	Magnetic fields beyond galaxy clusters	192
10.1	Low frequency radio emission as a tracer of extragalactic	
	magnetic fields	192
10.2	Large scale intergalactic shocks and "fossil" radio galaxies	194
10.3	γ-Ray probes for weak intergalactic fields in cosmic voids	197
10.4	$B_{\rm IG}$ from the angular broadening of a γ -ray cascade	202
10.5	Intergalactic magnetic field γ -ray flux probes down to 10^{-20} G	205
10.6	Summary remarks	207
11	Intergalactic cosmic rays, gamma rays, and magnetic fields	210
11.1	A brief introduction	210
11.2	Magnetic effects on UHECR propagation in intergalactic space	211
11.3	Energy losses of UHECR nucleons in intergalactic space	214
11.4	CR nuclei of helium and heavier nuclei	218
11.5	Candidate production sites for UHECRs	219
11.6	γ -Rays, neutrons, and neutrinos at high energies	221
11.7	Detection instruments for UHECRs	222
11.8	Some additional comments on UHECR detection	223
11.9	The Pierre Auger UHECR telescope	226
11.10	Recent astrophysical results from UHECR observations	226

x *Contents*

11.11	An intergalactic magnetic field probe based solely on	
	UHECR measurements	229
11.12	Concluding comments on the high energy universe of	
	Chapters 10 and 11	232
12	Magnetic fields in cosmologically distant galaxy systems	235
12.1	Magnetic fields associated with absorption line systems in quasars	235
12.2	Probes of cosmological magnetic field evolution using quasar	
	Faraday rotation statistics	238
12.3	Magnetic field estimates from transverse probes of quasar intervenors	245
12.4	Transverse B probes and gravitational lensing	249
12.5	Rotation measure searches for a widespread, cosmologically	
	co-expanding intergalactic magnetic field	251
12.6	Importance of the global star formation rate (SFR) over all	
	galaxy redshifts	253
12.7	Post-amplification of existing IGM fields	254
12.8	Seed fields produced during and following the appearance of the	
	first stars and galaxies: some general, basic calculations	256
12.9	Indirect observational indicators of extragalactic magnetic fields	
	at large cosmological distances	258
12.10	Seed fields between Recombination and the early galaxy	
	formation epoch	259
13	Cosmic magnetic fields and our ultimate origins	263
13.1	Introduction: Why pre-Recombination magnetic fields are of interest	263
13.2	CMB fluctuations	264
13.3	The problem of foreground CMB fluctuations	265
13.4	Faraday rotation at the last scattering surface	265
13.5	Ideas and theories on seed fields originating around the QCD and/or	
	electroweak phase transitions in the primordial fluid	266
13.6	Summary and conclusion	270
	Abbreviations	272
	Symbols	273
	Object Index	278
	Subject Index	279

Preface

Recent observational advances reveal the widespread existence of magnetic fields in the Universe, and produce much firmer estimates of magnetic field *strengths* in both interstellar space and some regions of intergalactic space. Microgauss-level fields are a common component of spiral galaxy disks and halos. Current measurements can detect magnetic fields, directly or indirectly, in the late universe of galaxies as far as "observational reach" can take us. This is at least to $z \sim 3$, and means that they have not globally changed into the past, that covers at least 90% of the lookback time to the origin of the Universe.

They appear to pervade the intracluster medium of clusters of galaxies, and indeed well beyond the cluster core regions. Strengths of ordered magnetic fields in the intracluster medium of cool core galaxy clusters exceed what is typical for the interstellar medium of the Milky Way. This challenges us to explain how they were first generated, and then regenerated to the unexpectedly high measured levels, and to answer the related question of how such widespread magnetic fields influenced the formation of stars and galaxies.

In this book I describe how extragalactic magnetic fields on different scales and in different astrophysical systems can be probed and measured. I also discuss some new methods which could be used to indirectly infer field strengths that are otherwise beyond the reach of direct measurement.

Some basic physical processes responsible for the regeneration of fields are outlined, including mechanisms of magnetic diffusivity and dissipation that influence field amplification. Fast dynamo processes associated with galaxy halo outflow and radio jets can demonstrably magnetise large volumes of intergalactic space; nonetheless, the mechanisms are far from completely understood. Fast-acting dynamo mechanisms appear to operate in galaxies through galaxy outflow, in extragalactic jets and lobes, and possibly in cooling flow clusters. Magnetic reconnection and related magnetohydrodynamic (MHD) processes may also be important.

Whether the intergalactic fields we now observe were originally produced in stars and galaxies, or in the pre-Recombination early Universe is a question with many ramifications, and increasingly discussed. It seems clear that stars and galaxies can seed and regenerate magnetic fields in various ways, post-Recombination. But magnetic fields may have also emerged earlier during Inflation, and perhaps integral to creation of the first subatomic particles as they emerged from the primordial "soup" in the course of enormous energy transfers.

Additional or colour-enhanced illustrations can also be found at the URL www.cambridge .org/9780521631631.

xi

Acknowledgements

I am especially grateful to Sharon Hanna for her invaluable advice and assistance in the preparation and checking of the manuscript. For figure drawing and improvement I am also indebted to Raul Cunha for his competent and cheerful assistance with the large and diverse range of illustrations.

I am indebted to the following colleagues, students, and friends for valued suggestions, checking, and assistance, and additional material: Felix Aharonian, Harjit S. Ahluwalia, Rainer Beck, Julia Becker-Tjus, Gregory Benford, Martin Bernet, Elly Berkhuijsen, Peter Biermann, Guido Birk, Robert Braun, Alan Bridle, Jo-Anne Brown, David Clarke, Stirling Colgate, Raul Cunha, William Daughton, Rod Davies, Eric Donovan, James Drake, Quentin Dufton, Andrew Fletcher, Ernst Fürst, Bryan Gaensler, Götz Golla, Salman Habib, Sharon Hanna, George Heald, Michael Hudson, Norbert Junkes, Karl-Heinz Kampert, Ulrich Klein, Arieh Königl, Roland Kothes, Fritz Krause, Marita Krause, Russell Kulsrud, Harald Lesch, Hui Li, Kathleen Lindeman, Richard Lovelace, Francesco Miniati, Mark Morris, Masanori Nakamura, Andrii Neronov, Phyllis Orbaugh, Frazer Owen, Eugene Parker, Phil Perillat, Rick Perley, Judith Perry, Bharat Ratra, Martin Rees, Patricia Reich, Wolfgang Reich, Brian Reville, Bob Rosner, Vera Rubin, Marcin Sawicki, Michael Scarrott, Gerd Schrade, Herta Schrade, Anwar Shukurov, Martine Simard-Normandin, Dmitry Sokoloff, Todor Stanev, Andrew S. Taylor, John R. Taylor, Chris Thompson, Serap Tilav, Ronald Tucker, Gerrit Verschuur, Heinz Völk, Ievgen Vovk, Richard Wielebinski, Hao Xu, and Ellen Zweibel. The list would be incomplete without acknowledgement of, and gratitude to many graduate students and postdocs who have contributed significantly, directly or indirectly, to my own work on magnetic fields in space.

The writing of this book was made possible with grant support from the Natural Sciences and Engineering Research Council of Canada (NSERC). In addition to NSERC, I am also grateful to the Alexander von Humboldt Foundation, the Canada Council Killam Program, the Guggenheim Foundation, and Los Alamos National Laboratory for enabling many of my own research results over several years.