

Contents

	Prefa	ice	page xiii
	Ackno	owledgments	xvi
	List o	of symbols	xvii
1	Basic	principles and concepts	1
	1.1	Introduction	1
	1.2	The physics and chemistry of foams and foaming	7
	1.3	The wetness and dryness of foams	9
	1.4	Capillary pressure and the Laplace–Young equation	11
	1.5	Plateau rules and pentagonal dodecahedral structures	12
	1.6	Foam structures produced from bubbles with narrow size	
		distributions	16
	1.7	Foam structures produced from bubbles with wide size distributions	21
	1.8	Surface-active agents are needed to stabilize bubbles and wet foams	23
		1.8.1 The adsorption of chemical surfactants at the air/water	
		interface	23
		1.8.2 The purity of chemical surfactants in foaming	27
		1.8.3 Other types of surface-active materials	28
	1.9	Surface tension and surface energy	29
	1.10	Gibbs adsorption and Gibbs elasticity	31
	1.11	Methods of measuring surface tension	34
		1.11.1 Maximum bubble pressure technique	38
		1.11.2 Overflow cylinder technique	38
		1.11.3 Oscillating jet technique	41
	1.12	Foamability and foam stability	41
		1.12.1 Surface tension, foamability and foam stability	45
		1.12.2 Combining foamability with foam stability	47
	1.13	Transition from wet to dry foams	48
2	The n	ature and properties of foaming surfactants	54
	2.1	The formation of self-assemblies from pre-micellar surfactant species	54
		2.1.1 Self-association in weakly hydrolysable soaps and fatty acids	56
		2.1.2 Solubility and the Krafft point	59

vi **Contents**

	2.2	Geometric packing of surfactant molecules in the interface and the critical	
		packing parameter	60
	2.3	Phase behavior of more concentrated surfactant formulations	62
	2.4	The influence of the Critical Packing Parameter on foaming	63
	2.5	The influence of surfactant solubility on foaming	64
	2.6	Anionic surfactants	64
	2.7	Nonionic surfactants	65
	2.8		66
	2.9		68
	2.10	<u> </u>	69
	2.11	· ·	
		self-assemblies	71
	2.12	Influence of structure on foaming and low-foaming surfactants	75
	2.13	The application of the HLB (hydrophile–lipophile) balance concept to	
		foaming	78
	2.14	Temperature effects on surface tension and foaming	80
3	Soap	bubbles and thin films	84
	3.1	Introduction and early studies	84
	3.2	20th-century studies on thin liquid films	86
	3.3	Experimental techniques for investigating free horizontal circular liquid	
		films	87
		3.3.1 The conventional Scheludko/Exerowa thin film balance	87
		3.3.2 The porous plug film holder to measure disjoining isotherms	
		and surface forces in thin films	89
		3.3.3 The bike wheel microcell film holder	90
		3.3.4 The Nikolov/Wasan film balance for measuring drainage and film	
		thickness of curved foam films	91
	3.4	Drainage of horizontal thin films	92
	3.5	Drainage of vertical thin films	96
	3.6	Disjoining pressure isotherms obtained from porous plug experiments	99
	3.7	Intermolecular forces are the reason that thin films are stable	99
	3.8	The physical chemistry of black films	104
	3.9	Rupture mechanism of free microscopic horizontal foam films	105
	3.10	Rupture of films between bubbles under dynamic conditions	106
	3.11	Importance of fundamental studies on foam films	107
4	Proce	esses in foaming	112
	4.1	Overview of processes	112
	4.2	Ascent of bubbles in liquids	113
		4.2.1 Influence of nonionic surfactants	115
		4.2.2 Influence of ionic surfactant	118
		4.2.3 Bubbles bouncing from the interface	119

4.2.5 The detection of surface-active contaminants in water 4.3 Drainage of foams 4.3.1 Forced, free and pulsed drainage 4.3.1.2 Free drainage 4.3.1.3 Pulsed drainage 4.3.1.3 Pulsed drainage 4.3.1.3 Pulsed drainage 4.3.1.4 Influence on interfacial properties 4.3.5 Experimental approaches 127 4.3.5 Experimental approaches 128 4.3.6 Influence of foam film type 128 4.4 Disproportionation (Ostwald ripening) 4.4.1 Experimental methods with foams 4.4.2 Experimental methods with thin films 4.4.3 Models and theories 4.4.3.1 Diffusion theory 4.4.3.2 Energy barriers (nucleation theory and fluctuation of holes) 4.4.3 Freely standing film 4.4.3.4 Density fluctuations and accessible area 4.4.4 Experimental results 4.5 Coupling disproportionation with drainage 4.6 Depletion of surfactant from solution 4.7 Humidity and evaporation 5.1 Introduction 5.2 The adsorption of surfactant on the freshly generated bubbles 5.5 Bubble size and distribution 5.4 Overview of foam generation techniques 5.5.1 High-intensity agitation (cavitation) 5.5.2 Rotary stirring in mineral processing 5.5.3 Rotary stirring in mineral processing 5.5.4 Shaking or successive flipping 5.5.5.5 Pouring and plunging jet methods 5.5.5.1 Static plunging jet 5.6.6 Growing bubbles from single orifices 173 5.6.1 Detachment of a bubble from single orifices 174 5.6.2 Growing bubbles using frits 175 5.6.3 Co-injection			Contents	VII
4.2.5 The detection of surface-active contaminants in water 4.3 Drainage of foams 4.3.1 Forced, free and pulsed drainage 4.3.1.2 Free drainage 4.3.1.3 Pulsed drainage 4.3.1.3 Pulsed drainage 4.3.1.3 Pulsed drainage 4.3.1.4 Influence on interfacial properties 4.3.5 Experimental approaches 4.3.4 Influence of foam film type 4.4 Disproportionation (Ostwald ripening) 4.4.1 Experimental methods with foams 4.4.2 Experimental methods with films 4.4.3 Models and theories 4.4.3.1 Diffusion theory 4.4.3.2 Energy barriers (nucleation theory and fluctuation of holes) 4.4.3.3 Freely standing film 4.4.3.4 Density fluctuations and accessible area 4.4.4 Experimental results 4.5 Coupling disproportionation with drainage 4.6 Depletion of surfactant from solution 4.7 Humidity and evaporation 5 Generation of bubbles and foams 5.1 Introduction 5.2 The adsorption of surfactant on the freshly generated bubbles 5.5 Mechanical methods 5.5.1 High-intensity agitation (cavitation) 5.5.2 Rotary stirring in food processing 5.5.3 Rotary stirring in mineral processing 5.5.4 Overview of foam generation techniques 5.5.5.2 Continuous plunging jet 5.5.5.3 Carowing bubbles from single orifices, frits and gas injection 5.6.1 Detachment of a bubble from single orifices 174 5.6.2 Growing bubbles rom single orifices, frits and gas injection 5.6.4 Monodispersed bubbles and microfluidic foams				
4.3.1 Forced, free and pulsed drainage 4.3.1.1 Forced, free and pulsed drainage 4.3.1.2 Free drainage 4.3.1.3 Pulsed drainage 4.3.1.3 Pulsed drainage 4.3.4 Influence on interfacial properties 2.7 4.3.3 Experimental approaches 4.3.4 Influence of foam film type 2.8 4.3.4 Influence of foam film type 2.8 4.4 Disproportionation (Ostwald ripening) 3.3 4.4.1 Experimental methods with foams 3.3 4.4.2 Experimental methods with finlms 3.3 4.4.3 Models and theories 4.4.3.1 Diffusion theory 4.4.3.2 Energy barriers (nucleation theory and fluctuation of holes) 4.4.3.3 Freely standing film 4.4.3.4 Density fluctuations and accessible area 3.8 4.4.4 Experimental results 4.5 Coupling disproportionation with drainage 4.6 Depletion of surfactant from solution 4.7 Humidity and evaporation 4.7 Humidity and evaporation 5.1 Introduction 5.2 The adsorption of surfactant on the freshly generated bubbles 5.3 Bubble size and distribution 5.4 Overview of foam generation techniques 5.5.1 High-intensity agitation (cavitation) 5.5.2 Rotary stirring in food processing 5.5.3 Rotary stirring in mineral processing 5.5.4 Shaking or successive flipping 5.5.5.5 Pouring and plunging jet methods 5.5.5.1 Static plunging jet 5.5.5.5.2 Continuous plunging jet 5.6.6 Growing bubbles from single orifices, frits and gas injection 5.6.1 Detachment of a bubble from single orifices 174 5.6.2 Growing bubbles tom microfluidic foams 177 5.6.4 Monodispersed bubbles and microfluidic foams				120
4.3.1.1 Forced, free and pulsed drainage 4.3.1.1 Forced drainage 4.3.1.2 Free drainage 4.3.1.2 Free drainage 4.3.1.3 Pulsed drainage 127 4.3.1.3 Pulsed drainage 128 4.3.2 Influence on interfacial properties 129 4.3.3 Experimental approaches 128 4.3.4 Influence of foam film type 128 4.4 Disproportionation (Ostwald ripening) 130 4.4.1 Experimental methods with foams 131 4.4.2 Experimental methods with thin films 133 4.4.3 Models and theories 134 4.4.3.1 Diffusion theory 135 4.4.3.2 Energy barriers (nucleation theory and fluctuation of holes) 14.4.3.3 Freely standing film 14.4.3 Poensity fluctuations and accessible area 138 4.4.4 Experimental results 138 4.5 Coupling disproportionation with drainage 144 4.6 Depletion of surfactant from solution 147 Humidity and evaporation 147 5 Generation of bubbles and foams 155 5.1 Introduction 5.2 The adsorption of surfactant on the freshly generated bubbles 5.5.1 High-intensity agitation (cavitation) 5.4 Overview of foam generation techniques 5.5.1 High-intensity agitation (cavitation) 5.5.2 Rotary stirring in food processing 5.5.3 Rotary stirring in mineral processing 5.5.4 Shaking or successive flipping 5.5.5.5 Pouring and plunging jet methods 5.5.5.1 Static plunging jet 5.5.5.2 Continuous plunging jet 5.6.6 Growing bubbles from single orifices 174 5.6.2 Growing bubbles using frits 176 5.6.4 Monodispersed bubbles and microfluidic foams 177			4.2.5 The detection of surface-active contaminants in water	122
4.3.1.1 Forced drainage 4.3.1.2 Free drainage 4.3.1.3 Pulsed drainage 127 4.3.1.3 Pulsed drainage 128 4.3.1.3 Experimental approaches 129 4.3.3 Experimental approaches 128 4.3.4 Influence of foam film type 128 4.4.0 Disproportionation (Ostwald ripening) 130 4.4.1 Experimental methods with foams 132 4.4.2 Experimental methods with thin films 133 4.4.3 Models and theories 134 4.4.3.1 Diffusion theory 135 4.4.3.2 Energy barriers (nucleation theory and fluctuation of holes) 14.4.3.4 Pensity fluctuations and accessible area 138 4.4.4 Experimental results 138 4.5 Coupling disproportionation with drainage 144 4.6 Depletion of surfactant from solution 147 Humidity and evaporation 155 15 Generation of bubbles and foams 155 15.1 Introduction 155 15.2 The adsorption of surfactant on the freshly generated bubbles 155 15.3 Bubble size and distribution 155 15.4 Overview of foam generation techniques 15.5.5 Mechanical methods 15.5.1 High-intensity agitation (cavitation) 15.5.2 Rotary stirring in food processing 15.5.3 Rotary stirring in mineral processing 15.5.4 Shaking or successive flipping 15.5.5.5 Pouring and plunging jet methods 15.5.5.1 Static plunging jet 15.6 Growing bubbles from single orifices, frits and gas injection 156 156.4 Monodispersed bubbles and microfluidic foams 177		4.3	Drainage of foams	122
4.3.1.2 Free drainage			4.3.1 Forced, free and pulsed drainage	124
4.3.1.3 Pulsed drainage 4.3.2 Influence on interfacial properties 4.3.3 Experimental approaches 4.3.4 Influence of foam film type 4.4 Disproportionation (Ostwald ripening) 4.4.1 Experimental methods with foams 4.4.2 Experimental methods with fin films 4.4.3 Models and theories 4.4.3.1 Diffusion theory 4.4.3.2 Energy barriers (nucleation theory and fluctuation of holes) 4.4.3.3 Freely standing film 4.4.3.4 Density fluctuations and accessible area 4.4.4 Experimental results 4.5 Coupling disproportionation with drainage 4.6 Depletion of surfactant from solution 4.7 Humidity and evaporation 5.1 Introduction 5.2 The adsorption of surfactant on the freshly generated bubbles 5.3 Bubble size and distribution 5.4 Overview of foam generation techniques 5.5 Mechanical methods 5.5.1 High-intensity agitation (cavitation) 5.5.2 Rotary stirring in food processing 5.5.3 Rotary stirring in mineral processing 5.5.4 Shaking or successive flipping 5.5.5.5 Pouring and plunging jet methods 5.5.5.1 Static plunging jet 5.5.5.2 Continuous plunging jet 5.5.5.3 Growing bubbles from single orifices, frits and gas injection 5.6.4 Monodispersed bubbles and microfluidic foams 177			4.3.1.1 Forced drainage	124
4.3.2 Influence on interfacial properties 127 4.3.3 Experimental approaches 128 4.3.4 Influence of foam film type 128 4.4 Disproportionation (Ostwald ripening) 130 4.4.1 Experimental methods with foams 132 4.4.2 Experimental methods with thin films 133 4.4.3 Models and theories 134 4.4.3.1 Diffusion theory 135 4.4.3.2 Energy barriers (nucleation theory and fluctuation of holes) 136 4.4.3.2 Energy barriers (nucleation theory and fluctuation of holes) 136 4.4.3.2 Energy barriers (nucleation theory and fluctuation of holes) 136 4.4.3.2 Energy barriers (nucleation theory and fluctuation of holes) 136 4.4.3.1 Discipling film 137 4.4.3.2 Energy barriers (nucleation theory and fluctuation of holes) 138 4.5 Coupling disproportionation with drainage 144 4.6 Depletion of surfactant from solution 146 4.7 Humidity and evaporation 155 5.1 Introduction 155 5.2			4.3.1.2 Free drainage	127
4.3.3 Experimental approaches 4.3.4 Influence of foam film type 128 4.4 Disproportionation (Ostwald ripening) 130 4.4.1 Experimental methods with foams 132 4.4.2 Experimental methods with thin films 133 4.4.3 Models and theories 134 4.4.3.1 Diffusion theory 135 4.4.3.2 Energy barriers (nucleation theory and fluctuation of holes) 4.4.3.3 Freely standing film 137 4.4.3.4 Density fluctuations and accessible area 138 4.4.4 Experimental results 138 4.5 Coupling disproportionation with drainage 144 4.6 Depletion of surfactant from solution 147 Humidity and evaporation 147 5 Generation of bubbles and foams 155 5.1 Introduction 15.2 The adsorption of surfactant on the freshly generated bubbles 155 5.3 Bubble size and distribution 156 5.4 Overview of foam generation techniques 15.5 Mechanical methods 15.5.1 High-intensity agitation (cavitation) 160 5.5.2 Rotary stirring in food processing 161 5.5.3 Rotary stirring in mineral processing 162 5.5.4 Shaking or successive flipping 168 5.5.5 Pouring and plunging jet methods 5.5.5.1 Static plunging jet 5.5.5.2 Continuous plunging jet 5.5.5.3 Co-injection 5.6.4 Monodispersed bubbles and microfluidic foams 177			-	127
4.3.4 Influence of foam film type 4.4 Disproportionation (Ostwald ripening) 4.4.1 Experimental methods with foams 4.4.2 Experimental methods with thin films 4.4.3 Models and theories 4.4.3.1 Diffusion theory 4.4.3.2 Energy barriers (nucleation theory and fluctuation of holes) 4.4.3.3 Freely standing film 4.4.3.4 Density fluctuations and accessible area 4.4.4 Experimental results 4.5 Coupling disproportionation with drainage 4.6 Depletion of surfactant from solution 4.7 Humidity and evaporation 5 Generation of bubbles and foams 155 5.1 Introduction 5.2 The adsorption of surfactant on the freshly generated bubbles 5.5 Mechanical methods 5.5.1 High-intensity agitation (cavitation) 5.5.2 Rotary stirring in food processing 5.5.3 Rotary stirring in food processing 5.5.4 Shaking or successive flipping 5.5.5 Pouring and plunging jet methods 5.5.5.1 Static plunging jet methods 5.6.1 Detachment of a bubbles rom single orifices 5.6.2 Growing bubbles tom glitch from single orifices 5.6.4 Monodispersed bubbles and microfluidic foams 177				127
4.4.1 Experimental methods with foams 130 4.4.1 Experimental methods with foams 132 4.4.2 Experimental methods with thin films 133 4.4.3 Models and theories 134 4.4.3.1 Diffusion theory 135 4.4.3.2 Energy barriers (nucleation theory and fluctuation of holes) 136 4.4.3.3 Freely standing film 137 4.4.3 Density fluctuations and accessible area 138 4.4.4 Experimental results 138 4.5 Coupling disproportionation with drainage 144 4.6 Depletion of surfactant from solution 146 4.7 Humidity and evaporation 147 5 Generation of bubbles and foams 155 5.1 Introduction 155 5.2 The adsorption of surfactant on the freshly generated bubbles 155 5.3 Bubble size and distribution 156 5.4 Overview of foam generation techniques 158 5.5 Mechanical methods 159 5.5.1 High-intensity agitation (cavitation) 160 5.5.2 Rotary stirring in food processing 161 5.5.3 Rotary stirring in mineral processing 165 5.5.5 Pouring and plunging jet methods 170 5.5.5.			* **	128
4.4.1 Experimental methods with foams 132 4.4.2 Experimental methods with thin films 133 4.4.3 Models and theories 134 4.4.3.1 Diffusion theory 135 4.4.3.2 Energy barriers (nucleation theory and fluctuation of holes) 136 4.4.3.3 Freely standing film 137 4.4.4 Experimental results 138 4.5 Coupling disproportionation with drainage 144 4.6 Depletion of surfactant from solution 146 4.7 Humidity and evaporation 147 5 Generation of bubbles and foams 155 5.1 Introduction 155 5.2 The adsorption of surfactant on the freshly generated bubbles 155 5.3 Bubble size and distribution 156 5.4 Overview of foam generation techniques 158 5.5 Mechanical methods 159 5.5.1 High-intensity agitation (cavitation) 160 5.5.2 Rotary stirring in mineral processing 161 5.5.3 Rotary stirring in mineral processing 165 5			* *	128
4.4.2 Experimental methods with thin films 133 4.4.3 Models and theories 134 4.4.3.1 Diffusion theory 135 4.4.3.2 Energy barriers (nucleation theory and fluctuation of holes) 136 4.4.3.3 Freely standing film 137 4.4.4 Experimental results 138 4.5 Coupling disproportionation with drainage 144 4.6 Depletion of surfactant from solution 146 4.7 Humidity and evaporation 147 5 Generation of bubbles and foams 155 5.1 Introduction 155 5.2 The adsorption of surfactant on the freshly generated bubbles 155 5.3 Bubble size and distribution 156 5.4 Overview of foam generation techniques 158 5.5 Mechanical methods 159 5.5.1 High-intensity agitation (cavitation) 160 5.5.2 Rotary stirring in food processing 161 5.5.3 Rotary stirring in mineral processing 165 5.5.4 Shaking or successive flipping 168 5.5.5		4.4		130
4.4.3 Models and theories 134 4.4.3.1 Diffusion theory 135 4.4.3.2 Energy barriers (nucleation theory and fluctuation of holes) 136 4.4.3.3 Freely standing film 137 4.4.3.4 Density fluctuations and accessible area 138 4.4.4 Experimental results 138 4.5 Coupling disproportionation with drainage 144 4.6 Depletion of surfactant from solution 146 4.7 Humidity and evaporation 147 5 Generation of bubbles and foams 155 5.1 Introduction 155 5.2 The adsorption of surfactant on the freshly generated bubbles 155 5.3 Bubble size and distribution 156 5.4 Overview of foam generation techniques 158 5.5 Mechanical methods 158 5.5.1 High-intensity agitation (cavitation) 160 5.5.2 Rotary stirring in food processing 161 5.5.3 Rotary stirring in mineral processing 165 5.5.4 Shaking or successive flipping 168 <td< td=""><td></td><td></td><td></td><td>132</td></td<>				132
4.4.3.1 Diffusion theory 4.4.3.2 Energy barriers (nucleation theory and fluctuation of holes) 4.4.3.3 Freely standing film 4.4.3.4 Density fluctuations and accessible area 138 4.4.4 Experimental results 138 4.5 Coupling disproportionation with drainage 144 4.6 Depletion of surfactant from solution 147 Humidity and evaporation 147 5 Generation of bubbles and foams 155 5.1 Introduction 155 5.2 The adsorption of surfactant on the freshly generated bubbles 155 5.3 Bubble size and distribution 156 5.4 Overview of foam generation techniques 158 5.5 Mechanical methods 159 5.5.1 High-intensity agitation (cavitation) 160 5.5.2 Rotary stirring in food processing 161 5.5.3 Rotary stirring in mineral processing 162 5.5.4 Shaking or successive flipping 168 5.5.5 Pouring and plunging jet methods 170 5.5.5.2 Continuous plunging jet 170 5.6.6 Growing bubbles from single orifices, frits and gas injection 173 5.6.1 Detachment of a bubble from single orifices 174 5.6.2 Growing bubbles using frits 176 5.6.3 Co-injection 177 5.6.4 Monodispersed bubbles and microfluidic foams				
4.4.3.2 Energy barriers (nucleation theory and fluctuation of holes) 4.4.3.3 Freely standing film 4.4.3.4 Density fluctuations and accessible area 38 4.4.4 Experimental results 138 4.5 Coupling disproportionation with drainage 144 4.6 Depletion of surfactant from solution 146 4.7 Humidity and evaporation 155 Generation of bubbles and foams 155 5.1 Introduction 156 5.2 The adsorption of surfactant on the freshly generated bubbles 157 5.1 Bubble size and distribution 158 5.2 Werview of foam generation techniques 158 5.5 Mechanical methods 159 5.5.1 High-intensity agitation (cavitation) 160 5.5.2 Rotary stirring in food processing 161 5.5.3 Rotary stirring in mineral processing 162 5.5.4 Shaking or successive flipping 168 5.5.5 Pouring and plunging jet methods 5.5.5.1 Static plunging jet 5.5.5.2 Continuous plunging jet 5.5.5.3 Co-injection 173 5.6.4 Monodispersed bubbles and microfluidic foams				
holes) 4.4.3.3 Freely standing film 4.4.3.4 Density fluctuations and accessible area 4.4.4 Experimental results 138 4.5 Coupling disproportionation with drainage 144 4.6 Depletion of surfactant from solution 146 4.7 Humidity and evaporation 155 Generation of bubbles and foams 155 5.1 Introduction 155 5.2 The adsorption of surfactant on the freshly generated bubbles 155 5.3 Bubble size and distribution 154 Overview of foam generation techniques 158 5.5 Mechanical methods 159 5.5.1 High-intensity agitation (cavitation) 160 5.5.2 Rotary stirring in food processing 161 5.5.3 Rotary stirring in mineral processing 165 5.5.4 Shaking or successive flipping 168 5.5.5 Pouring and plunging jet methods 5.5.5.1 Static plunging jet 5.5.5.2 Continuous plunging jet 170 5.6.4 Growing bubbles from single orifices, frits and gas injection 173 5.6.1 Detachment of a bubble from single orifices 174 5.6.2 Growing bubbles using frits 176 5.6.3 Co-injection 177 5.6.4 Monodispersed bubbles and microfluidic foams			· · · · · · · · · · · · · · · · · · ·	135
4.4.3.3 Freely standing film 4.4.3.4 Density fluctuations and accessible area 138 4.4.4 Experimental results 138 4.5 Coupling disproportionation with drainage 144 4.6 Depletion of surfactant from solution 146 4.7 Humidity and evaporation 155 Generation of bubbles and foams 155 5.1 Introduction 155 5.2 The adsorption of surfactant on the freshly generated bubbles 155 5.3 Bubble size and distribution 156 5.4 Overview of foam generation techniques 158 5.5 Mechanical methods 159 5.5.1 High-intensity agitation (cavitation) 160 5.5.2 Rotary stirring in food processing 161 5.5.3 Rotary stirring in mineral processing 165 5.5.4 Shaking or successive flipping 168 5.5.5 Pouring and plunging jet methods 170 5.5.5.1 Static plunging jet 171 5.6 Growing bubbles from single orifices, frits and gas injection 173 5.6.1 Detachment of a bubble from single orifices 174 5.6.2 Growing bubbles using frits 176 5.6.3 Co-injection 177 5.6.4 Monodispersed bubbles and microfluidic foams			•	
4.4.3.4 Density fluctuations and accessible area 4.4.4 Experimental results 4.5 Coupling disproportionation with drainage 144 4.6 Depletion of surfactant from solution 146 4.7 Humidity and evaporation 5.1 Introduction 155 5.2 The adsorption of surfactant on the freshly generated bubbles 155 5.3 Bubble size and distribution 154 5.4 Overview of foam generation techniques 155 5.5 Mechanical methods 159 5.5.1 High-intensity agitation (cavitation) 15.5.2 Rotary stirring in food processing 161 5.5.3 Rotary stirring in mineral processing 165 5.5.4 Shaking or successive flipping 168 5.5.5 Pouring and plunging jet methods 170 5.5.5 Growing bubbles from single orifices, frits and gas injection 173 5.6.1 Detachment of a bubble from single orifices 174 5.6.2 Growing bubbles using frits 176 5.6.3 Co-injection 177 5.6.4 Monodispersed bubbles and microfluidic foams			· · · · · · · · · · · · · · · · · · ·	
4.4.4 Experimental results 4.5 Coupling disproportionation with drainage 4.6 Depletion of surfactant from solution 4.7 Humidity and evaporation 5 Generation of bubbles and foams 5.1 Introduction 5.2 The adsorption of surfactant on the freshly generated bubbles 5.3 Bubble size and distribution 5.4 Overview of foam generation techniques 5.5 Mechanical methods 5.5.1 High-intensity agitation (cavitation) 5.5.2 Rotary stirring in food processing 5.5.3 Rotary stirring in mineral processing 5.5.4 Shaking or successive flipping 5.5.5 Pouring and plunging jet methods 5.5.5 Pouring and plunging jet methods 5.5.5 Growing bubbles from single orifices, frits and gas injection 5.6.1 Detachment of a bubble from single orifices 5.6.2 Growing bubbles using frits 5.6.3 Co-injection 177 5.6.4 Monodispersed bubbles and microfluidic foams				
4.5 Coupling disproportionation with drainage 4.6 Depletion of surfactant from solution 4.7 Humidity and evaporation 147 5 Generation of bubbles and foams 155 5.1 Introduction 155 5.2 The adsorption of surfactant on the freshly generated bubbles 155 5.3 Bubble size and distribution 156 5.4 Overview of foam generation techniques 158 5.5 Mechanical methods 159 5.5.1 High-intensity agitation (cavitation) 160 5.5.2 Rotary stirring in food processing 161 5.5.3 Rotary stirring in mineral processing 165 5.5.4 Shaking or successive flipping 168 5.5.5. Pouring and plunging jet methods 5.5.5.1 Static plunging jet 5.5.5.2 Continuous plunging jet 170 5.6.1 Detachment of a bubble from single orifices 174 5.6.2 Growing bubbles using frits 176 5.6.3 Co-injection 177 5.6.4 Monodispersed bubbles and microfluidic foams				
4.6 Depletion of surfactant from solution 4.7 Humidity and evaporation 147 5 Generation of bubbles and foams 155 5.1 Introduction 155 5.2 The adsorption of surfactant on the freshly generated bubbles 155 5.3 Bubble size and distribution 156 5.4 Overview of foam generation techniques 158 5.5 Mechanical methods 159 5.5.1 High-intensity agitation (cavitation) 160 5.5.2 Rotary stirring in food processing 161 5.5.3 Rotary stirring in mineral processing 165 5.5.4 Shaking or successive flipping 168 5.5.5 Pouring and plunging jet methods 170 5.5.5.1 Static plunging jet 170 5.6.1 Detachment of a bubble from single orifices 174 5.6.2 Growing bubbles using frits 176 5.6.3 Co-injection 177 5.6.4 Monodispersed bubbles and microfluidic foams			•	
4.7 Humidity and evaporation Generation of bubbles and foams 5.1 Introduction 5.2 The adsorption of surfactant on the freshly generated bubbles 5.3 Bubble size and distribution 5.4 Overview of foam generation techniques 5.5 Mechanical methods 5.5.1 High-intensity agitation (cavitation) 5.5.2 Rotary stirring in food processing 5.5.3 Rotary stirring in mineral processing 5.5.4 Shaking or successive flipping 5.5.5 Pouring and plunging jet methods 5.5.5 Pouring and plunging jet methods 5.5.5.1 Static plunging jet 5.5.5.2 Continuous plunging jet 5.6.3 Growing bubbles from single orifices, frits and gas injection 5.6.1 Detachment of a bubble from single orifices 5.6.2 Growing bubbles using frits 5.6.3 Co-injection 5.6.4 Monodispersed bubbles and microfluidic foams				
5 Generation of bubbles and foams 5.1 Introduction 5.2 The adsorption of surfactant on the freshly generated bubbles 5.3 Bubble size and distribution 5.4 Overview of foam generation techniques 5.5 Mechanical methods 5.5.1 High-intensity agitation (cavitation) 5.5.2 Rotary stirring in food processing 5.5.3 Rotary stirring in mineral processing 5.5.4 Shaking or successive flipping 5.5.5 Pouring and plunging jet methods 5.5.5.1 Static plunging jet 5.5.5.2 Continuous plunging jet 5.6 Growing bubbles from single orifices, frits and gas injection 5.6.1 Detachment of a bubble from single orifices 5.6.2 Growing bubbles using frits 5.6.3 Co-injection 5.6.4 Monodispersed bubbles and microfluidic foams 177				
5.1 Introduction The adsorption of surfactant on the freshly generated bubbles 5.2 Bubble size and distribution 5.3 Bubble size and distribution 5.4 Overview of foam generation techniques 5.5 Mechanical methods 5.5.1 High-intensity agitation (cavitation) 5.5.2 Rotary stirring in food processing 5.5.3 Rotary stirring in mineral processing 5.5.4 Shaking or successive flipping 5.5.5 Pouring and plunging jet methods 5.5.5.1 Static plunging jet 5.5.5.2 Continuous plunging jet 5.6 Growing bubbles from single orifices, frits and gas injection 5.6.1 Detachment of a bubble from single orifices 5.6.2 Growing bubbles using frits 5.6.3 Co-injection 177 5.6.4 Monodispersed bubbles and microfluidic foams		4.7	Humidity and evaporation	147
5.2 The adsorption of surfactant on the freshly generated bubbles 5.3 Bubble size and distribution 5.4 Overview of foam generation techniques 5.5 Mechanical methods 5.5.1 High-intensity agitation (cavitation) 5.5.2 Rotary stirring in food processing 5.5.3 Rotary stirring in mineral processing 5.5.4 Shaking or successive flipping 5.5.5 Pouring and plunging jet methods 5.5.5 Pouring and plunging jet 5.5.5.1 Static plunging jet 5.5.5.2 Continuous plunging jet 5.6.4 Growing bubbles from single orifices, frits and gas injection 5.6.2 Growing bubbles using frits 5.6.3 Co-injection 177 5.6.4 Monodispersed bubbles and microfluidic foams	5	Gen	eration of bubbles and foams	155
5.3 Bubble size and distribution 5.4 Overview of foam generation techniques 5.5 Mechanical methods 5.5.1 High-intensity agitation (cavitation) 5.5.2 Rotary stirring in food processing 5.5.3 Rotary stirring in mineral processing 5.5.4 Shaking or successive flipping 5.5.5 Pouring and plunging jet methods 5.5.5.1 Static plunging jet 5.5.5.2 Continuous plunging jet 5.5.5.4 Growing bubbles from single orifices, frits and gas injection 5.5.5.1 Detachment of a bubble from single orifices 5.6.2 Growing bubbles using frits 5.6.3 Co-injection 5.6.4 Monodispersed bubbles and microfluidic foams		5.1	Introduction	155
5.4 Overview of foam generation techniques 5.5 Mechanical methods 5.5.1 High-intensity agitation (cavitation) 5.5.2 Rotary stirring in food processing 5.5.3 Rotary stirring in mineral processing 5.5.4 Shaking or successive flipping 5.5.5 Pouring and plunging jet methods 5.5.5.1 Static plunging jet 5.5.5.2 Continuous plunging jet 5.5.5.3 Growing bubbles from single orifices, frits and gas injection 5.6.1 Detachment of a bubble from single orifices 5.6.2 Growing bubbles using frits 5.6.3 Co-injection 177 5.6.4 Monodispersed bubbles and microfluidic foams		5.2	The adsorption of surfactant on the freshly generated bubbles	155
5.5 Mechanical methods 5.5.1 High-intensity agitation (cavitation) 5.5.2 Rotary stirring in food processing 5.5.3 Rotary stirring in mineral processing 5.5.4 Shaking or successive flipping 5.5.5 Pouring and plunging jet methods 5.5.5.1 Static plunging jet 5.5.5.2 Continuous plunging jet 5.6 Growing bubbles from single orifices, frits and gas injection 5.6.1 Detachment of a bubble from single orifices 5.6.2 Growing bubbles using frits 5.6.3 Co-injection 177 5.6.4 Monodispersed bubbles and microfluidic foams		5.3	Bubble size and distribution	156
5.5.1 High-intensity agitation (cavitation) 5.5.2 Rotary stirring in food processing 161 5.5.3 Rotary stirring in mineral processing 165 5.5.4 Shaking or successive flipping 168 5.5.5 Pouring and plunging jet methods 5.5.5.1 Static plunging jet 5.5.5.2 Continuous plunging jet 5.6.4 Growing bubbles from single orifices, frits and gas injection 173 5.6.2 Growing bubbles using frits 174 5.6.3 Co-injection 177 5.6.4 Monodispersed bubbles and microfluidic foams		5.4	Overview of foam generation techniques	158
5.5.2 Rotary stirring in food processing 5.5.3 Rotary stirring in mineral processing 5.5.4 Shaking or successive flipping 5.5.5 Pouring and plunging jet methods 5.5.5.1 Static plunging jet 5.5.5.2 Continuous plunging jet 5.6.4 Growing bubbles from single orifices, frits and gas injection 5.6.1 Detachment of a bubble from single orifices 174 5.6.2 Growing bubbles using frits 176 5.6.3 Co-injection 177 5.6.4 Monodispersed bubbles and microfluidic foams		5.5	Mechanical methods	159
5.5.3 Rotary stirring in mineral processing 5.5.4 Shaking or successive flipping 5.5.5 Pouring and plunging jet methods 5.5.5.1 Static plunging jet 5.5.5.2 Continuous plunging jet 5.6.6 Growing bubbles from single orifices, frits and gas injection 5.6.1 Detachment of a bubble from single orifices 5.6.2 Growing bubbles using frits 5.6.3 Co-injection 177 5.6.4 Monodispersed bubbles and microfluidic foams			5.5.1 High-intensity agitation (cavitation)	160
5.5.4 Shaking or successive flipping 5.5.5 Pouring and plunging jet methods 5.5.5.1 Static plunging jet 5.5.5.2 Continuous plunging jet 5.6 Growing bubbles from single orifices, frits and gas injection 5.6.1 Detachment of a bubble from single orifices 5.6.2 Growing bubbles using frits 5.6.3 Co-injection 177 5.6.4 Monodispersed bubbles and microfluidic foams			5.5.2 Rotary stirring in food processing	161
5.5.5 Pouring and plunging jet methods 5.5.5.1 Static plunging jet 170 5.5.5.2 Continuous plunging jet 171 5.6 Growing bubbles from single orifices, frits and gas injection 173 5.6.1 Detachment of a bubble from single orifices 174 5.6.2 Growing bubbles using frits 176 5.6.3 Co-injection 177 5.6.4 Monodispersed bubbles and microfluidic foams 177			, , ,	165
5.5.5.1 Static plunging jet 5.5.5.2 Continuous plunging jet 5.6 Growing bubbles from single orifices, frits and gas injection 5.6.1 Detachment of a bubble from single orifices 5.6.2 Growing bubbles using frits 5.6.3 Co-injection 177 5.6.4 Monodispersed bubbles and microfluidic foams				168
5.5.5.2 Continuous plunging jet 5.6 Growing bubbles from single orifices, frits and gas injection 5.6.1 Detachment of a bubble from single orifices 5.6.2 Growing bubbles using frits 5.6.3 Co-injection 177 5.6.4 Monodispersed bubbles and microfluidic foams				170
5.6 Growing bubbles from single orifices, frits and gas injection 5.6.1 Detachment of a bubble from single orifices 174 5.6.2 Growing bubbles using frits 176 5.6.3 Co-injection 177 5.6.4 Monodispersed bubbles and microfluidic foams 177				170
5.6.1 Detachment of a bubble from single orifices 174 5.6.2 Growing bubbles using frits 176 5.6.3 Co-injection 177 5.6.4 Monodispersed bubbles and microfluidic foams 177				171
5.6.2 Growing bubbles using frits1765.6.3 Co-injection1775.6.4 Monodispersed bubbles and microfluidic foams177		5.6	Growing bubbles from single orifices, frits and gas injection	173
5.6.3 Co-injection 177 5.6.4 Monodispersed bubbles and microfluidic foams 177				174
5.6.4 Monodispersed bubbles and microfluidic foams 177				176
<u>.</u>				177
5.7 Nucleation of gas bubbles 180			<u>.</u>	177
		5.7	Nucleation of gas bubbles	180

viii Contents

		5.7.1 Nucleation of bubbles in champagne and other beverages	181
		5.7.2 Dissolved air and column flotation	184
	5.8	In situ generation of foams by chemical reactions	186
	5.9	Gas generation by electrolysis	188
6	Coal	escence of bubbles in surfactant solutions	194
	6.1	The formation, break-up and coalescence of bubbles in surfactant	
		solutions	194
	6.2	The role of surface tension gradients in coalescence	196
	6.3	Relationship between elasticity and critical transition	
		concentration $C_{\rm t}$	198
	6.4	Experimental studies on bubble coalescence	199
		6.4.1 Bubble swarm and single bubbles	199
		6.4.2 2D Bubble rafts	199
		6.4.3 Coalescence at the moment of bubble creation	200
		6.4.4 Freely rising single bubble using a laser detector	202
		6.4.5 Growing bubbles from adjacent nozzles	205
		Coalescence in aqueous solution of electrolytes	209
		Influence of bubble approach velocity on bubble coalescence	212
	6.7	Influence of temperature on coalescence	215
7	The	stability/instability of bubbles and foams	220
	7.1	Overview	220
	7.2	Classification of the stability of foams	222
		7.2.1 Unstable (transient) foams	222
		7.2.2 Metastable foams	223
		7.2.3 High-stability foams	223
		7.2.4 Ultrastable foams	223
	7.3	Reversing the stability of foams	223
		7.3.1 pH-responsive foams	224
		7.3.2 Temperature-responsive foams	225
		7.3.3 Gas-responsive foams	226
	7.4	Gibbs-Marangoni effect	227
	7.5	Interfacial rheology	227
		7.5.1 Dilational surface viscoelasticity	229
		7.5.2 Theories and models	231
		7.5.3 Experimental techniques for measurement of elasticity	
		and surface viscosity	232
		7.5.4 Oscillating bubble methods	233
		7.5.5 Experimental studies of elasticity and surface viscosity	235
	7.6	•	236
		7.6.1 Single surfactant systems, pH, electrolyte and specific ion	
		effects	237

		Contents	(i
		7.6.2 Mixtures of surfactants, foam builders/boosters	238
		7.6.3 Polymer/surfactant mixtures	240
		7.6.4 Condensed shells	244
		7.6.5 Nanopatterning	244
		7.6.6 Hydrophobins	244
		7.6.7 Control of gas diffusion	246
		7.6.7.1 Gas type and foam type	247
	7.7	Interfacial rheology and gas permeability	249
	7.8	Stability by increase in bulk viscosity	252
	7.9	Stability control in aerated food systems	252
	7.10	Stratification	253
		7.10.1 Hole formation and the diffusion osmotic mechanism	254
		7.10.2 Reversible stratification behavior in nonionic surfactants	257
		7.10.3 Stratification in charged surfactant systems	258
		7.10.4 Stratification in polydispersed systems	259
	7.11	Stabilization by liquid crystals	261
	7.12	Stabilization by emulsion and pseudo-emulsion films	263
8	Partic	le-stabilized foams	269
	8.1	Introduction	269
	8.2	History of particle-stabilized foam systems	271
	8.3	Established processes	271
	8.4	Fundamentals of collision, contact angles, attachment/detachment	273
	8.5	Measurement of attachment time between bubble and particle	275
	8.6	Relationship between attachment force and contact angle	275
	8.7	Detachment of particles from bubbles	277
	8.8	Surface tension of films of attached particles	278
	8.9	Interactions between neighboring particles attached to the interface	280
	8.10	Key parameters influencing the interactions between bubbles and	
		particles	283
	8.11	Steric barriers	284
	8.12	Experimental studies relating contact angle and wetting on particle	
		attachment and stability	286
	8.13	Janus particles	289
	8.14	The influence of concentration, surface charge and state of	
		agglomeration	290
	8.15	Simple models of interactions between droplets (bubbles) coated with	
		particles	291
	8.16	Models of packing, agglomeration and bridging of particles	293
	8.17	Particle/surfactant and particle/polymer mixtures	294
		8.17.1 Surface tension measurements of particle/surfactant	<i>-</i> -
		mixture	296
		8.17.2 Gel films	297

x Contents

	8.18	Diffusive disproportionation and shrinkage of particle-laden foams	298
	8.19	Drainage with film containing particle/surfactant mixtures	300
	8.20	Super particle stabilized foams generated by a magnetic field	302
	8.21	Preparation of stabilized monodispersed bubbles with particles	302
9	Foami	ng in non-aqueous liquids	307
	9.1	Introduction	307
	9.2	Hydrocarbon-type surfactants	308
	9.3	Polymethylsiloxane and fluoroalkyl-type surfactants	309
	9.4	Phase separation from partially immiscible liquids	312
	9.5	Lamellar liquid crystals, surfactant solid particles and lipid phases	314
	9.6	Bulk viscosity	322
	9.7	Inorganic electrolytes in non-aqueous liquids	322
	9.8	Interfacial charge in non-aqueous systems	324
	9.9	Defoaming in non-aqueous solutions	325
	9.10	Thin film studies with non-aqueous and ionic liquids	325
10	Antifo	aming and defoaming	331
	10.1	Background and types of antifoamers and defoamers	331
	10.2	Physico-chemical mechanisms	334
		10.2.1 Droplets and oil lenses: spreading coefficient (S_c) , entry	
		coefficient (E_c) and bridging coefficient (B_c)	334
		10.2.2 Emulsified droplets and pseudo-emulsion films	338
		10.2.3 Effects of disjoining pressure on the stability of the	
		pseudo-emulsion film	338
	10.3	Experimental studies	340
	10.4	Surface tension gradients, viscosity and drainage	341
	10.5	Superspreading	342
	10.6	Influence of the interfacial and micellar aggregates	342
	10.7	Particles	344
	10.8	Cloud-point antifoamer: block copolymers	347
	10.9	Fatty alcohol antifoamers: melting point, gel layers and droplet	
		rigidity	347
	10.10	Precipitation effects	349
	10.11	Mixtures of particles and oils	351
	10.12	Fast and slow antifoamers and the film trapping technique	353
	10.13		356
	10.14	Influence of the hydrophobicity of solid particles on E_c	358
	10.15	* * * * *	360
	10.16	1 1 2	360
	10.17		362
		10.17.1 Ultrasonics	363

Contents xi

		10.17.2 Suppression of foam by the adjustment of the vessel wettability	367
11	Bubb	le size measurements and foam test methods	372
	11.1	Introduction	372
	11.2	Bubble size measurements	374
		11.2.1 Direct 2D imaging	374
		11.2.2 Optical fiber probe analysis	376
		11.2.3 X-ray tomographic imaging	378
		11.2.4 Nuclear magnetic resonance imaging and terahertz	
		spectroscopy	380
		11.2.5 Ultrasonic imaging	380
		11.2.6 Multiple light scattering and back scattering	381
	11.3	Bubbly liquids and foam test methods	382
		11.3.1 Whipping, shake tests and the Bartsch test method	383
		11.3.2 Rotor mixer tests	383
		11.3.3 Ross–Miles (pour test)	383
		11.3.4 Bikerman test (sparging in a cylindrical column)	385
	11.4	Test methods under controlled pressure	388
		11.4.1 Time of deviation (t_{dev}) and time of transition (t_{tr})	388
		11.4.2 Head space and pressure drop test methods	391
	11.5	Electrical conductivity test method (the Foam Scan apparatus)	392
	11.6	Measurement of bubbles lifetimes and free microscopic films	394
	11.7	, 1	
		defoamers	397
	11.8	e i	
		machines	399
	11.9	Comparison of different laboratory foaming test methods	401
12	Bubble and foam chemistry – new areas of foam research		405
	12.1	Antibubbles	405
	12.2		408
	12.3	Particle-stabilized foams at high temperatures: metal and material	
		foams	410
	12.4	Foams in nature and bio-surfactants	413
	Index	x	420